Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging.
نویسندگان
چکیده
Magnetic resonance based molecular imaging has emerged as a very promising technique for early detection and treatment of a wide variety of diseases, including cancer, neurodegenerative disorders, and vascular diseases. The limited sensitivity and specificity of conventional MRI are being overcome by the development of a new generation of contrast agents, using nanotechnology approaches, with improved magnetic and biological properties. In particular, for molecular imaging, high specificity, high sensitivity, and long blood circulation times are required. Furthermore, the lack of toxicity and immunogenicity together with low-cost scalable production are also necessary to get them into the clinics. In this work, we describe a facile, robust and cost-effective ligand-exchange method to synthesize dual T1 and T2 MRI contrast agents with long circulation times. These contrast agents are based on manganese ferrite nanoparticles (MNPs) between 6 and 14 nm in size covered by a 3 kDa polyethylene glycol (PEG) shell that leads to a great stability in aqueous media with high crystallinity and magnetization values, thus retaining the magnetic properties of the uncovered MNPs. Moreover, the PEGylated MNPs have shown different relaxivities depending on their size and the magnetic field applied. Thus, the 6 nm PEGylated MNPs are characterized by a low r2/r1 ratio of 4.9 at 1.5 T, hence resulting in good dual T1 and T2 contrast agents under low magnetic fields, whereas the 14 nm MNPs behave as excellent T2 contrast agents under high magnetic fields (r2 = 335.6 mM(-1) s(-1)). The polymer core shell of the PEGylated MNPs minimizes their cytotoxicity, and allows long blood circulation times. This combination of cellular compatibility and excellent T2 and r2/r1 values under low magnetic fields, together with long circulation times, make these nanomaterials very promising contrast agents for molecular imaging.
منابع مشابه
Synthesis and evaluation of chitosan manganese-ferrite nanoparticles as MRI contrast agent
Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles (CMn-Fe nps) and evaluated its ability for the mice macrophage ...
متن کاملSynthesis and evaluation of chitosan manganese-ferrite nanoparticles as MRI contrast agent
Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles (CMn-Fe nps) and evaluated its ability for the mice macrophage ...
متن کاملSynthesis and evaluation of chitosan manganese-ferrite nanoparticles as MRI contrast agent
(*) Corresponding Author e-mail: [email protected] ABSTRACT: Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles...
متن کاملSynthesis and Characterization of Chitosan Coated Manganese Zinc Ferrite Nanoparticles as MRI Contrast Agents
Manganese zinc ferrite nanoparticles (MZF NPs) were synthesized by using a direct, efficient and environmental friendly hydrothermal method. To improve the colloidal stability of MZF NPs for biomedical applications, NPs were coated with chitosan by ionic gelation technique using sodium tripolyphosphate (TPP) as crosslinker. The synthesized NPs were characterized by X ray diffraction (XRD) analy...
متن کاملZinc ferrite nanoparticles as MRI contrast agentsw
Magnetic resonance imaging (MRI) is a powerful clinical imaging technique for the non-invasive diagnosis and posttherapy assessment of a variety of diseases. MRI contrast can be enhanced by the use of positive or negative contrast agents resulting in brighter (T1-weighted) or darker (T2-weighted) images, respectively. Superparamagnetic iron oxide (SPIO) nanoparticles are T2 contrast agents that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2015